Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution.

نویسندگان

  • J Tsang
  • G F Joyce
چکیده

In an earlier study, an in vitro evolution procedure was applied to a large population of variants of the Tetrahymena group I ribozyme to obtain individuals with a 10(5)-fold improved ability to cleave a target single-stranded DNA substrate under simulated physiological conditions. The evolved ribozymes also showed a twofold improvement, compared to the wild-type, in their ability to cleave a single-stranded RNA substrate. Here, we report continuation of the in vitro evolution process using a new selection strategy to achieve both enhanced DNA and diminished RNA-cleavage activity. Our strategy combines a positive selection for DNA cleavage with a negative selection against RNA binding. After 36 "generations" of in vitro evolution, the evolved population showed an approximately 100-fold increase in the ratio of DNA to RNA-cleavage activity. Site-directed mutagenesis experiments confirmed the selective advantage of two covarying mutations within the catalytic core of the ribozyme that are largely responsible for this modified behavior. The population of ribozymes has now undergone a total of 63 successive generations of evolution, resulting in an average of 28 mutations relative to the wild-type that are responsible for the altered phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flanking sequences with an essential role in hydrolysis of a self-cleaving group I-like ribozyme.

DiGIR1 is a group I-like ribozyme derived from the mobile twin ribozyme group I intron DiSSU1 in the nuclear ribosomal DNA of the myxomycete Didymium iridis. This ribozyme is responsible for intron RNA processing in vitro and in vivo at two internal sites close to the 5'-end of the intron endo-nuclease open reading frame and is a unique example of a group I ribozyme with an evolved biological f...

متن کامل

Eukaryotic Penelope-Like Retroelements Encode Hammerhead Ribozyme Motifs

Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceos...

متن کامل

Directed evolution of an RNA enzyme.

An in vitro evolution procedure was used to obtain RNA enzymes with a particular catalytic function. A population of 10(13) variants of the Tetrahymena ribozyme, a group I ribozyme that catalyzes sequence-specific cleavage of RNA via a phosphoester transfer mechanism, was generated. This enzyme has a limited ability to cleave DNA under conditions of high temperature or high MgCl2 concentration,...

متن کامل

Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes

A simple new strategy for the in vitro synthesis of circular RNAs and hairpin ribozymes is described. Circular single-strand DNA oligonucleotides 67-79 nt in length are constructed to encode both hairpin ribozyme sequences and ribozyme-cleavable sequences. In vitro transcription of these small circles by Escherichia coli RNA polymerase produces long repeating RNAs by a rolling circle mechanism....

متن کامل

A newt ribozyme: a catalytic activity in search of a function.

We analyzed the cleavage properties and the transcription regulation of the newt (Triturus vulgaris meridionalis) self-cleaving RNA. In vitro self-cleavage of model oligoribonucleotides occurs within a double hammerhead structure. In addition, an entire ribozyme molecule, as well as its catalytic domain, "trans-cleaves" in vitro appropriate oligoribonucleotide substrates. Signals encoded within...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 262 1  شماره 

صفحات  -

تاریخ انتشار 1996